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We studied developmental plasticity using functional magnetic resonance imaging (fMRI) in a preterm infant with
brain injury on structural MRI. fMRI showed preserved brain function and subsequent neurodevelopment was within
the normal range. Multimodal neuroimaging including fMRI can improve understanding of neural plasticity after preterm

birth and brain injury. (J Pediatr 2017;189:213-7).

reterm birth has been associated with an increased risk

for an adverse neurodevelopmental outcome."* Brain

injury is common among prematurely born infants
and often affects cerebral white and gray matter,”® which in
turn affects function”® and leads to neurodevelopmental im-
pairments. The consequences of altered brain development and
its relation to prematurity, however, are highly variable, and
currently available measures are poor (or at best moderate)
prognostic indicators of neurodevelopmental impairments.
Recent studies highlight the potential diagnostic value of mag-
netic resonance imaging (MRI) in preterm born infants.”"' We
studied an extremely preterm infant, whose early birth, brain
injury, and difficult course in the neonatal intensive care unit
indicated a high risk of poor neurodevelopmental outcome.
Multimodal neuroimaging was used to evaluate structure and
function in the motor and auditory/language systems, domains
commonly affected in preterm born infants.'” Subsequent
neurodevelopment was evaluated using standard clinical be-
havioral measures from term-equivalent age to 25 months cor-
rected age (CA).

Methods

A male infant was born at 24 weeks of gestation through spon-
taneous vaginal delivery. His birth weight was 830 g, and his
Apgar scores were 6, 5, 6,7,and 7 at 1, 5, 10, 15, and 20 minutes,
respectively. He required invasive and noninvasive respira-
tory support for 66 days. In the neonatal intensive care unit,
he was treated for respiratory distress syndrome, apnea of pre-
maturity, pulmonary interstitial emphysema, bronchopulmo-
nary dysplasia, intraventricular hemorrhage (grade III right,
grade IV left) with posthemorrhagic ventricular dilation, co-
agulase negative staphylococcal sepsis, group B streptococcal
pneumonia, patent ductus arteriosus, necrotizing enterocoli-

CA Corrected age

FA Fractional anisotropy

fMRI  Functional magnetic resonance imaging
GLM  General linear model

MRI  Magnetic resonance imaging

PMA  Postmenstrual age

TE Time echo

TR Time repetition

tis, retinopathy of prematurity, anemia, hypertension, and gas-
troesophageal reflux. At term-equivalent age, atypical auditory
function was indicated by an auditory brainstem response
screen for hearing in the right ear. The patient was part of a
larger study investigating the effects of prematurity on early
brain function and development. Ethical approval was ob-
tained from the Western University Health Sciences Research
Ethics Board, and informed consent given by a parent.

An MRI was acquired at 38 weeks postmenstrual age (PMA)
and 3 and 9 months CA during natural sleep without the use
of sedation. Parental questionnaires at 3, 6, and 9 months CA
included the Vineland Adaptive Behavior Scales, second edition"
and the Receptive-Expressive Emergent Language Scales, third
edition.' In addition, the patient was evaluated at 41 weeks
PMA, as well as at 4, 8, 13, and 25 months CA in the Devel-
opmental Follow-Up Clinic at Children’s Hospital, London,
Ontario, Canada, with assessments of motor development (Test
of Infant Motor Performance Alberta Infant Motor Scale),'>!®
neurologic integrity (Infant Neurologic International Battery),"”
and overall development (Bayley Scales of Infant and Toddler
Development, third edition)."®

Structural brain images were acquired using a T2-weighted
imaging sequence (at 38 weeks PMA: 1.5T 450W GE MRI
system [General Electric Healthcare, Milwaukee, Wisconsin],
TR/TE = 5495/8.12 ms, flip angle = 160°, 106 slices, 0.7 X 0.7 X 4
mm resolution; at 3 months: 3T Siemens Prisma MRI system
[Erlangen, Germany], TR/TE = 10 810/156 ms, flip angle = 144°,
96 slices, 1 mm?® resolution; at 9 months: 3T Siemens Prisma
MRI system, TR/TE = 3200/412 ms, flip angle = 120°, 128 slices,
1 mm’ resolution). T2-weighted structural MRI images at all
time points were reviewed by a neuroradiologist and scored
based on the classification system by Inder et al"” and Wood-
ward et al.*”*' To characterize key white-matter tracts, 2
diffusion-weighted MRI sequences with opposite phase-
encoding polarities (right-left and left-right) were acquired at
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3 and 9 months CA (multiband echo planar imaging with ac-
celeration factor 4, 138 images comprising 10 images with
b =0 s/mm? and 128 noncollinear diffusion weighting direc-
tions with b = 1500 s/mm?, 2 mm’ isotropic voxel resolution,
matrix 96 x 96, TR/TE = 1980/71 ms).

Four sessions at 38 weeks PMA and 2 sessions at 3 and 9
months CA, respectively, of functional MRI (fMRI) were ac-
quired, each lasting 7 minutes with 15 seconds of auditory
stimulation alternating with 11 seconds of silence (at 38 weeks
PMA: TR/TE = 1920/60 ms, flip angle = 70°, 22 slices, 3 mm’
resolution; at and 9 months: TR/TE = 780/40 ms and 686/
30 ms, respectively, multiband factor 4, flip angle = 54°, 36 slices,
3 mm’ resolution). Auditory stimuli consisted of sung lulla-
bies as previous studies reported robust brain responses to natu-
ralistic, language-related sounds even in sleeping infants.”>*
Sounds were presented through customized ear defenders, using
earplugs and minimuffs (Scanmedics, Chatswood, NSW, Aus-
tralia; http://scanmedics.com/mini-muffs/) for additional ear
protection.

Structural and fMRI data preprocessing were performed
using SPM8 (Wellcome Trust Centre for Neuroimaging,
London, United Kingdom) with the automatic analysis
pipeline.” The fMRI data were analyzed using a general linear
model (GLM) containing the block stimulation paradigm, con-
volved with neonate-specific (at 38 weeks PMA) or adult (at
3 and 9 months CA) hemodynamic response functions, a lag-3
second order Volterra expansion of the 6 realignment vari-
ables, and “spike” regressors to model sudden intensity (>3 SDs)
and motion (>2 mm) outliers. The GLM included a high-
pass filter (length 120s) for sound-evoked activation analysis
and a bandpass filter from 0.01 to 0.1 Hz for the functional
connectivity analysis. “Sound > silence” contrasts identified
voxels with increased activity to auditory stimulation. To assess
functional connectivity, the activation time course of a seed
region (left motor and left auditory cortex, respectively) was
included as an additional regressor in the GLM to identify voxels
with similar activation patterns. Although networks were
derived from fMRI with a stimulus rather than in resting state
it has been shown to give similar overall networks® and to pre-
serve individual differences in connectivity.”® Diffusion image
processing was performed using FSL software (Analysis Group,
FMRIB, Oxford, United Kingdom)*” by means of the TOPUP
toolbox to combine the 2-phase encoding data into 1 cor-
rected image. EDDY was applied to correct for eddy current-
induced distortions and subject movement. Nonbrain tissue
was removed with the brain extraction tool,?® and fractional
anisotropy (FA), mean diffusivity, axial diffusivity, and radial
diffusivity maps generated by using DTIFIT (Functional Mag-
netic Resonance Imaging of the Brain diffusion toolbox). Seed
and waypoint mask of interest were generated on color coded
FA maps, and white matter pathways of interest were ob-
tained with a probabilistic tracking algorithm.

Results

T2-weighted structural MRI images showed pronounced
ventriculomegaly, increased extracerebral space, and moder-
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ate white matter abnormality with a score of 12 (moderate
score range 10-12). White matter abnormalities noted were
thinning of the corpus callosum, ventricular dilatation, and
reduced white matter volumes, although there was no loss in
the volume of periventricular white matter (Figure, A). Gray
matter was unremarkable with a score of 5 (normal score
range 3-5). Tractography from the diffusion-weighted imaging
revealed overall and tract-specific increments of FA and
decreases for diffusivity indices (mean, axial and radial
diffusivity) between 3 and 9 months CA (Table I; available at
www.jpeds.com). Compared with reported development of
diffusion indices during the first year of life in term-born
infants, similar or potentially slightly reduced rates of change
were noted between the 2 time points (ie, 2%-13% FA in-
crease from 3 to 9 months CA compared with 9%-44% change
between birth and 1 year reported in term-born peers).”’
The cortico-spinal tract, connecting the posterior limb of
the internal capsule with the motor cortex in the precentral
gyrus (Figure, B), appeared typical at 3 and 9 months CA. In
contrast, the auditory interhemispheric pathway was atypi-
cal, as it did not connect through the corpus callosum, but
instead followed an unusual path through the brainstem at
3 months CA, and through the thalamus at 9 months CA
(Figure, B).

In contrast to the structural injury, the fMRI analysis found
strong interhemispheric connectivity in both the auditory and
motor cortical networks at all time points (Figure, C). This
is in accordance with earlier studies showing that localized in-
terhemispheric connections between homotopic counter-
parts is established around term equivalent age in term- and
preterm-born infants.’®”' The focus of the current case report
is motor and auditory/language development, thus, other net-
works were not further explored. In addition, fMRI data re-
vealed bilateral activity evoked by sound in the auditory network
at 38 weeks PMA and 3 months CA (Figure, D). No cortical
correspondence of the unilateral failure in auditory brain-
stem response was observed.

No activity was observed with fMRI at 9 months CA, which
might be due to increased patient movement in the scanner
with resultant lower signal-to-noise. Although identification
of brain activity in response to a stimulus may be inferred to
indicate normal brain function and can be related to other mea-
sures, caution must be used in interpreting absence of brain
activation.

Neurodevelopment in the domains of motor, cognitive, lan-
guage, and social behavior was within the normal range from
38 weeks PMA to 25 months CA (Table II). Mild abnormali-
ties in muscle tone were reported at 4 and 8 months CA. At 9
and 13 months CA, motor development was at the 25th-
27th percentiles. At 25 months CA, the patient was able to walk
and run and used both hands equally. He had play behavior
and social interactions that were within the normal range. He
knew approximately 100 words, produced 3 word sentences,
and followed simple instructions. His scores on the Cogni-
tive, Language, and Motor subscales of the Bayley Scales of
Infant and Toddler Development, third edition were within the
average range.
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Figure. Coronal brain images of A, structural, B, diffusion, C, functional connectivity (black dots indicate seed regions; P < .05
family-wise corrected), and D, task-based activation (P < .05 uncorrected) at different acquisition time points. Images pre-
sented in neurologic convention.
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Table II. Neurodevelopmental outcomes
TIMP Vineland-2 REEL-3 AIMS Bayley llI
raw score standard score standard score raw score INFANIB standard score
(percentile) (percentile) (percentile) (percentile) raw score (raw score)
41 wk GA 70 (50-70)
3mo CA AB 105 (63) 106 (65)
Motor 112 (79)
4 mo CA 14 (25-50) 76
6 mo CA AB 106 (66) 113 (81)
Motor 100 (50)
8 mo CA 29 (>10) 78
9 mo CA AB 108 (70) 106 (65)
Motor 91 (27)
13 mo CA 52 (25) 96
25 mo CA Cognitive 91
(58)
Language 90
(Receptive 23)
(Expressive 28)
Motor 97
(Fine 39)
L (Gross 55)

AIMS, Alberta Infant Motor Scale; Bayley /ll, Bayley Scales of Infant and Toddler Development, third edition; GA, gestational age; INFANIB, Infant Neurologic International Battery; REEL-3, Receptive-
Expressive Emergent Language Scales Test, third edition; TIMP, Test of Infant Motor Performance; Vineland-2, Vineland Adaptive Behavior Scales, second edition.

Data are presented as the standard or raw score and (percentile ranks), if available.

Discussion

The infant’s extremely premature birth, low Apgar score, dif-
ficult clinical course, and substantial brain injury put him at
high risk for poor developmental outcome.”” However, brain
injury does not automatically imply functional impairment.
Our patient presented with ventriculomegaly, increased
extracerebral space, white matter abnormality, and disrupted
white matter tracts for auditory interhemispheric connectiv-
ity. However, functional connectivity between auditory and
motor networks was typical and stimulus-evoked brain re-
sponses were found in the auditory-language network. These
functional responses suggest preservation of function through
plasticity, which was confirmed in the attainment of
neurodevelopmental milestones within the normal range. The
assessment of brain function in addition to the evaluation of
structural anomalies in our case, thus, provided a measure of
the effect of injury on the establishment of brain function and
plasticity. Particularly for infants at risk for adverse
neurodevelopment, fMRI might provide a valuable addition
to clinical assessment for early prognosis. Future evaluation
of the sensitivity of different MRI modalities to certain types
of brain injury in preterm born infants has the potential to
allow detailed assessments of the degree of preservation or dis-
ruption of brain function within neurocognitive networks. l
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a )
Table I. Overall and interhemispheric white matter
indices for patient at 3 and 9 months CA and percent

change
3moCA 9moCA % change
Overall white matter FA 1232 .1386 T13%
MD .0013 .0011 L15%
AD .0015 .0013 113%
RD .0012 .0011 1 8%
Auditory interhemispheric ~ FA .3324 .3444 T 4%
connectivity MD .0011 .0010 1 9%
AD .0015 .0014 L 7%
RD .0009 .0008 L11%
Cortico-spinal tract FA L 3514 .3601 T 2%
R .3460 .3611 1 4%
MD L .0010 .0010 1 0%
R .0010 .0010 1 0%
AD L .0015 .0014 T7%
R .0015 .0013 113%
RD L .0008 .0008 1 0%
L R .0008 .0008 1 0% )

AD, axial diffusivity; L, left; MD, mean diffusivity; R, right; RD, radial diffusivity.
FA was expected to increase (denoted by T) while the other metrics were expected to de-

crease (denoted by ).
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