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The phase, as well as the magnitude, of MRI images
can carry useful information. It may be used to encode
flow or temperature, or to map the magnetic field
for the undistorting of EPIs and automated shimming.
In all cases, we measure the extra spin given to nu-
clei. Unfortunately, we can only measure the final
phase of the spins: the rotation is wrapped into the
range [—, +], and to obtain a measure of the param-
eter of interest the missing multiples of 2@ must be
replaced—a process known as phase unwrapping.
While simple in principle, standard phase unwrapping
algorithms fail catastrophically in the presence of
even small amounts of noise. Here we present a new
algorithm for robust three-dimensional phase un-
wrapping, in which unwrapping is guided, so that it
initially works on less noisy regions. We test the algo-
rithm on simulated phase data, and on maps of mag-
netic field, which were then used to successfully un-
distort EPI images. The unwrapping algorithm could
be directly applied to other kinds of phase data. o 2002
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INTRODUCTION

Ideally, the magnetic field throughout the bore of an
MR scanner would be homogenous in the absence of
any applied gradients. Unfortunately, different mate-
rials, such as tissue, bone, and air, act to strengthen or
weaken magnetic fields to different extents—a prop-
erty characterised by their magnetic susceptibility.
When a head is placed in the scanner, inhomogeneities
are induced in the field, which can lead to loss of signal
(“dropout™) and image distortion. While shimming, the
application of small extra gradients, can cancel out
some of these inhomogeneities others remain. To coun-
teract the problem of distortion, Jezzard and Balaban
(1995) suggested measurement of the magnetic field
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strength across the head, which may then be used for
undistorting MR images. This paper describes a new
algorithm for the processing of a phase-contrast MR
acquisition that can be used to measure the field.

Information in the phase, rather than the magni-
tude, of MR images can allow us to measure many
interesting parameters, such as flow rate or magnetic
field strength. Usually, two datasets are acquired,
which differ only in the degree to which the phase is
influenced by the parameter of interest. One dataset is
used as a reference, and subtracted from the phase of
the other. In this way, uninteresting phase components
that are common to both images, such as the transmit-
ter or receiver characteristics, or those of the digital
filtering, are removed. Only the effect of the parameter
remains.

The phase is usually proportional to the parameter
of interest. However, it will have been wrapped into the
range [—m, +]. If the parameter we wish to measure
gives phase differences that are small enough to fall
into this range, then the measured phase can be used
directly for parameter estimation. If, on the other
hand, the magnitude of the phase difference is large
enough to be outside this range, then to recover the
true phase, we must restore the missing multiples of
2. This process known as phase unwrapping. The
phase of voxels in a volume may be unwrapped relative
to each other, provided that the underlying phase is
relatively slowly changing over space. So, for example,
in Fig. 1b, working from left to right, we can identify
that the change from +m to —7 at A and B indicates
that phase wrapping has occurred in the negative di-
rection, and to unwrap we need to add 27 to subse-
guent values. Conversely, the change from close to —
to +4r at position C and D indicates that wrapping has
occurred in the positive direction, and we need to sub-
tract —27 from subsequent values. Note that here, we
are taking a single reference value (on the far left) and
then unwrapping relative to this. We discuss later the
problem of calculating the appropriate offset for the

whole map.
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FIG. 1. The underlying B field we are trying to measure is shown in (a). The wrapped phase is shown in (b), and with the addition of some
noise in (c). Unfortunately, as shown in (d) noise catastrophically interferes with unwrapping: the derived field (dark curve) differs over much

of space from the true one (light curve).

Let us consider the limitations on the unwrapping
procedure in the absence of noise. In theory, provided
the underlying field is spatially continuous, the only
discontinuities that can appear in the wrapped field
would be those from the wrapping process itself, and
unwrapping is straightforward. In practice, we deal
with sampled fields, which yield a set of discrete
measurements. To unwrap, we calculate the magni-
tude of the phase jump from one sample to the next
adjacent one. If the magnitude of the phase differ-
ence is greater than =, phase wrapping has oc-
curred—otherwise it has not. In the absence of noise,
we can correctly unwrap the field provided there are
no discontinuities between adjacent voxels in the
underlying field that are greater than .

Whilst in principle phase unwrapping is simple, in
practice it is rather more difficult to implement. The
problem is that it is highly sensitive to errors in regions
with low signal-to-noise. These errors can propagate

into areas with good signal, and lead to a catastrophic
failure of the unwrapping process. So, for example, if
just a few voxels in a map are noisy (Fig. 1c) and one
extra or fewer 27 phase discontinuity is introduced,
then all voxels downstream of those in unwrapping will
have a large error of *27 (see Fig. 1d). Even small
amounts of noise lead to failure of unwrapping over
large portions. With one-dimensional data, it is very
difficult to recover this information.

It is simple to extend phase unwrapping to two or
three dimensions. Again, we first choose a reference
pixel and then unwrap the others relative to this.
However, note that as we unwrap from one pixel to
another, there are now many different paths we
could follow (see Fig. 2a). Each different path can be
considered as a one-dimensional profile. Given that
our unwrapped map represents a physical quantity
that can only have one value at each position, the
unwrapped value of a pixel cannot be dependent on
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FIG. 2. The upper panel represents the phase as a function
of position in two-dimensional space. The darkest shading
represents —ar and the lightest shading +m. The speckled area
represents a patch of noise. The sharp boundaries between
dark and light are phase discontinuities: these are shown as lines
in the lower panel, with the arrows indicating the direction in
which 27 must be added. When unwrapping from one pixel (A) to
another (B), there are many paths that can be followed (e.g., 1 or
2). Only one of these (2) passes through the noisy area. Unwrap-
ping around a closed loop (dotted square) should give a sum of
zero, but where discontinuities end (x, y) nonzero sums are found.
These give a signature of noise in a region, which we use to guide
unwrapping.
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the unwrapping path we take to get there. It is this
redundancy that helps us robustly unwrap multi-
dimensional maps even when they are noisy. As in
one dimension, catastrophic errors in unwrapping
can propagate through the map where a 27 phase
discontinuity is missed, or an extra one crossed. We
can develop a robust algorithm provided that the
noise, in which 27 phase discontinuities are missed,
or extra ones introduced, is confined to particular
regions of the image, and we unwrap these regions
last. If we can deal with localized areas of noise, the
process will be very much more robust. Of course,
where an error spans large parts of the phase map,
then information may be lost and irrecoverable by
any algorithm.

Here we try to ascertain the amount of noise as func-
tion of space and unwrap the less noisy parts first. We
investigate different ways of estimating noise. In one
approach, we have used two measures derived from the
magnitude of the signal in the field maps. A second ap-
proach is based on algorithms developed for two-dimen-
sional phase unwrapping in optics and synthetic aper-
ture radar. This approach uses the property that as
unwrapping is path independent in a noise-free map,
the sum of signed phase wraps around any closed loop
should be zero (e.g., Dirac, 1931; for introduction see
http://lwww.physicstoday.org/pt/vol-54/iss-8/captions/
p27box1.html). Conversely, where different paths be-
tween the same pair of voxels give different unwrapped
values, there will be loops with a nonzero sum, and by
identifying these we can find noisy regions of the map.
When working in two dimensions with data sampled in
a rectangular lattice, the signed sum around any loop
is equal to the total of the signed sum around the 2 X
2 pixel rectangles it contains. If the sum around the
larger loop is non-zero, then at least one of the sums
around the 2 X 2 pixel rectangles must be nonzero
(Bone, 1991; Huntley, 1989). Hence, if there is noise in
a region that destroys path independence, there will
always be nonzero sums around at least one of the 2 X
2 pixel rectangles in that region. We refer to these
points around which there is a nonzero sum as poles.
When working in three dimensions with data sampled
in a cuboid lattice, any loop can be calculated by sum-
ming 2 X 2 voxel rectangles oriented in three orthog-
onal planes that make it up. Using logic similar to that
in two dimensions, the presence of poles that lead to a
loss of path independence in a region will always be
indicated by one or more nonzero sums around the 2 X
2 voxel rectangles, and we can use these to identify
noisy regions. We first identify all poles in a map by
calculating the sum of the phase unwraps around all
possible 2 X 2 loops in all directions. Then, we generate
a diffuse field around each, and sum these to form an
estimator of the noise at each voxel in the image. This
is then used to guide unwrapping.
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METHOD

Unwrapping Procedure

Our approach was to identify less noisy regions of the
phase image and unwrap these first. To do this, we
calculated an estimate of the amount of noise at each
voxel, with higher values corresponding to more noise
(hereafter called the noise estimation field), and un-
wrapped voxels with lower values first. We compared a
simple unguided unwrapping strategy to our new al-
gorithm with different types of estimators of noise. The
first noise estimators were based on the magnitude of
the signal in the phase map. For simulated data, this
was the magnitude of the phase difference map, ne-
gated. For the fMRI data, this was either the magni-
tude of the high TE field map, negated, or the mini-
mum magnitude of the voxel across the two field maps,
negated. A second type of noise estimator was derived
from the phase poles. First, all of the poles in the image
were identified. For each pole, for every voxel in the
map, a hoise estimation field value is calculated. This
is high close to the pole, and lower further away. The
noise fields for all of the individual poles are then
added together to form the single total noise field,
which is used to direct unwrapping.

For each iteration, only voxels lower than a particu-
lar threshold (the noise-field threshold) are un-
wrapped. On the first iteration, this threshold is low;
for subsequent iterations it is gradually increased. To
unwrap, first a starting seed and initial pole-field
threshold were specified. All of the voxels adjacent to
the seed were examined. For each, if its noise field
value is lower than the current noise-field threshold,
the voxel is unwrapped: if it is higher, unwrapping is
deferred. In this way, the regions far away from poles
(with a low noise-field value) are unwrapped first; and
regions close to poles done later. When all of the voxels
lower than the noise-field threshold have been un-
wrapped, unwrapping becomes braver (the noise-field
threshold is increased) and this process repeats for
another iteration.

Summary of “Standard” Algorithm

The simple unwrapping algorithm used a recursive
“flood fill” technique. The stages are as follows:

(1) Set current voxel C to be a seed voxel S

(2) For each neighbor that has not yet been visited,
unwrap. The neighbors of the voxel (x, y, z) were
checked in the following order: (x,y,z + 1), (X, y,z — 1),
x,y+1,2,x,y—1,2),x+1y,2),(x—1,y, 2). This
stage was repeated, until the whole map was un-
wrapped. A first-in first-out stack was used so that all
of the neighbors of a voxel are checked before the
neighbors of these neighbors.

757

Summary of New Algorithm

In stage one, the noise field that is to be used to guide
the unwrapping is derived either from the magnitude
of the field map or using the pole field. In stage two, the
map is unwrapped, beginning in low-noise areas.

Stage 1: Calculate noise estimation field. Simulated
data: Either (a) noise estimation field was magnitude
of phase-map, negated so that negative values corre-
spond to lower noise regions; or (b) identify poles in the
map by calculating unwrap total around loops around
2 X 2 voxel squares in all three orthogonal planes, and
flagging nonzero values as poles and then smoothing
this in three dimensions. fMRI data: Either (a) noise
estimation field to be the magnitude of long TE field
map, negated; (b) noise field was minimum magnitude
for a voxel in either of the acquisitions; or (c) generate
pole field as described for simulated data above.

Stage 2: Iterative unwrapping of low-noise areas first.
A similar procedure to the standard algorithm was
used, except that unwrapping was guided by the noise
estimation field.

(1) Set current voxel C to be a seed voxel S, and set
noise field threshold

(2) For each neighbor of the current voxel C:

(i) If it has a noise field value less than the
current threshold, unwrap and repeat
stage (2) for this new voxel.

(i) If it has a noise field greater than the
current threshold, don't unwrap now, and
only repeat stage (2) for this voxel when
threshold is high enough.

(3) When all voxels encountered below current
threshold are completed, increase noise field
threshold, and continue with new voxels that
may now be unwrapped.

Specific Details

Stage 1 with Pole Field

Pole positioning. Let us suppose we unwrap around
a small loop in the xy plane with coordinates (x, y, z) —
xXy+1,2-x+1,y+12->Kxx+1y 2 —
(X, y, 2). If we find a pole in this small square, our
algorithm puts a source of the pole field at the position
(x + 0.5,y + 0.5, z). Similar positioning is used for loops
in the xz and yz planes.

Field shape. A volume specifying the positions of all
of the poles was generated. This contained one at the
center coordinates of a pole and zero elsewhere. This
volume was then smoothed to form the pole field. A
pseudo-Gaussian smoothing filter was chosen as this is
approximately separable (i.e., convolutions in 3 orthog-
onal planes may be performed, rather than a more time
consuming 3-dimensional convolution). A kernel of five
points (0.1, 0.2, 0.4, 0.2, 0.1) was applied repeatedly on
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the x dimension, then on the y, then on the z. This
kernel was used as it only requires divisions by whole
multiples of two (and rescaling) and hence is fast. The
degree of smoothing was optimised by parametrically
varying the number of iterations between 0 and 5.

Unwrapping procedure. Unwrapping starts at a
seed voxel, which is arbitrarily assumed to have no
extra multiple of 2. This seed voxel is chosen to be one
with a low pole field. Then, in a flood-fill procedure, the
six nearest neighbor voxels are all checked for their
pole field. Any below the current threshold are un-
wrapped, and this stage recursively repeated on them.
Any above the threshold are queued for unwrapping at
the relevant threshold.

Pole-field threshold steps. The minimum and max-
imum pole field values were found. First, flood-fill un-
wrapping started with all voxels lower than the mini-
mum pole-field threshold being unwrapped. When this
was done, the threshold was increased by a single step
and any further voxels unwrapped. This procedure was
repeated until all of the steps had been done and all
voxels unwrapped. For the evaluation of the different
smoothing kernels, a high value (5000 steps) was cho-
sen to ensure that the unwrapping was gradual enough
to avoid an interaction. We then evaluated a range of
numbers of steps with the optimum smoothing kernel.
In fact, there was little computational cost to increas-
ing the number of steps.

Stage 2: Seed voxel. This was determined by finding
the centre of mass of the magnitude of the MR image
corresponding to the first phase map, and then search-
ing the neighboring voxels along 3 orthogonal direc-
tions for 16 voxels in each direction for the one with the
lowest pole field value.

Test Data

Simulated data. We used both simulated noisy
phase maps and acquired MRI data to test the algo-
rithms. The advantage of the former is that it provides
a known solution against which the result can be com-
pared, and many datasets with carefully controlled
amounts of noise can be generated. The latter allows
confirmation that the algorithm works on real data-
sets.

The signal to be encoded in phase of the simulated
maps was generated by creating a cylindrical linearly
increasing field, superimposing some writing on it. The
signal magnitude reduced in particular regions to give
a number of noisy clusters. An example of a slice
through a resultant wrapped volume is shown in Fig.
4a. The volumes were each 128 X 128 X 128 voxels.
The cylindrical field increased at a rate of 0.5 radians
per pixel. The letters had peak height of 4.85 radians
but were smoothed to avoid over-abrupt changes at the
edges. For each cluster of reduced signal strength, the
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magnitude of the signal was then reduced in a spher-
ical gaussian form by a factor given by:

m(r) =1 - efo.ouz

where m(r) = magnitude of noise;

(1)

r = distance in voxels from centre of noise cluster

Each reduced signal strength cluster was centred at
a random position chosen from a uniform distribution
throughout the volume. To the complex signal calcu-
lated using this phase and magnitude information was
added noise of random phase and magnitude 0.1 rela-
tive to the unattenuated signal magnitude.

For the pole-field noise estimator, we first optimised
the smoothing level on a high noise (100 cluster) image.
This was unwrapped with no pole-field smoothing, and
then 1, 2, 3, 4, or 5 iterations of smoothing. Then, with
the optimum smoothing level, we compared perfor-
mance of the algorithms as a function of noise level, by
varying the number of clusters between 5 and 100 in
steps of 5.

fMRI data. Three-dimensional phase maps were
calculated by acquiring a pair of three-dimensional
gradient echo data sets with all the parameters iden-
tical apart from the echo time. Two images are taken
and one used as a reference image so that phase shifts
due to the transmitter or receiver coils, to digital fil-
tering, or to other constant shifts, are subtracted out.
After complex reconstruction of the two datasets, the
first dataset was normalised to have a magnitude of
one, and then divided in complex mode into the second
dataset. From Euler’s formula, this is equivalent to a
subtraction of their phases, and so the phase of the
resultant complex map, after unwrapping and appro-
priate scaling, yields a map of the magnetic field. These
phase maps were collected on ten subjects using a
Bruker MEDSPEC 3T scanner at the Wolfson Brain
Imaging Centre in Cambridge. We used a Bruker
“GEFI TOMO” 3-D gradient echo sequence. We col-
lected two phase maps (64 X 256 X 64 matrix size, 256
mm?® FOV, TE = 7 and 16-1 ms, TR = 32 ms). Each of the
phase maps took around 2 min to acquire. The differ-
ence between the TEs used was relatively long, at 9-1
ms, to ensure good signal to noise, but this causes there
to be more phase wrapping, and it might be possible to
reduce this while maintaining adequate signal. For the
comparison of the different estimators of noise; only
nine datasets were used as the raw magnitude of the
individual field maps was not available for one.

To test the use of the final unwrapped data for the
undistorting of EPIs, we used the seventh volume in an
EPI time series (21 slices, TR = 10.029 s, TE = 27 ms,
128 X 128 voxels, FOV 250 X 250 mm, bandwidth in
phase-encode direction 1563 Hz). After unwrapping,
the Jezzard and Balaban (1995) undistorting algo-



NEW ROBUST 3D PHASE UNWRAPPING ALGORITHMS

rithm was applied. To undistort, we first had to rotate
our phase map and EPIs into the same orientation and
coregister them. As mentioned in the introduction, we
cannot calculate the absolute offset of the phase maps;
we can only unwrap the voxels relative to each other.
However, the effect of the addition of a constant of the
whole map will be to add a constant displacement to
the entire image. This will then be eliminated by our
coregistration stage, the exact details of which we hope
to expand upon in a later publication.

Pixels were shifted in the phase-encode (y, anterior-
posterior) direction. The shift was determined accord-
ing to the function:

$(r)
Ay(r) =1, m , (2)

where ¢(r) is unwrapped phase map, Ay is shift in
voxels, At is evolution time, b, is bandwidth in y direc-
tion, 1, is number of voxels in y direction.

After unwrapping, but before undistorting, the
phase map underwent some additional processing. It
was masked, to remove the areas of low signal
outside the brain. We used an algorithm borrowed
from Steve Smith’'s Brain Extraction Tool (http://
www.fmrib.ox.ac.uk/fsl). The brightness level at
which 2% of the voxels were dimmer was found (t,),
and the brightness level at which 98% were dimmer
was found (tg). Then the brightness 0.7 t, + 0.3 tg
was chosen as the threshold for masking.

Then, to guard against loss of signal within the im-
age to be undistorted or imperfect matching between
the phase map and the image, we dilated the phase
map. Voxels where the phase map had been masked,
but were within 10 mm of an unmasked voxel were
replaced by the phase value of the closest unmasked
voxel. Finally, the phase map was smoothed by a gaus-
sian filter with FWHM 5 mm.

To resample the EPI images, we used a Hanning
windowed Sinc function with a range of 9 voxels:

y'+R
Vx\y.2)=5 3 1Y, 2)
y=y'-R
ﬁnww—yv( ww—yn 3)
Ty —y) R+1 /)
where R = range of interpolation = 9, I’ = interpolated
image, | = raw image.

Note that as voxels only move in the y (anterior-
posterior) direction, only one-dimensional interpola-
tion is required.
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FIG. 3. The number of voxels incorrectly unwrapped using the
pole-field noise estimator as a function of the number of smoothing
iterations.

RESULTS

Simulated Data

We first optimized the degree of pole-field smoothing
by varying the number of smoothing iterations para-
metrically. We unwrapped a noisy map (100 clusters)
and evaluated performance by counting the number of
incorrectly unwrapped voxels. The results are shown in
Fig. 3. On this simulated data, optimal performance
was obtained with no pole-field smoothing, and so this
was used for the remaining investigations. Figure 4
shows an example of the simulated data used to test
the unwrapping algorithms. As can be seen from Fig.
4b, the standard unwrapping algorithm fails when it
encounters the noise clusters, and the errors then prop-
agate throughout the map. In our new algorithm, the
noisy areas are estimated either by generating the pole
field (Fig. 4c) or using the negated magnitude (Fig. 4e),
which then directs unwrapping. Figures 4d and 4f il-
lustrate successful unwrapping using the new algo-
rithm with magnitude and pole field information, re-
spectively. To gauge the robustness at different levels
of noise, we examined performance of the algorithms
for different numbers of noise clusters. Performance is
shown in Fig. 5. The new algorithm, using either of the
noise estimators, has far fewer errors for all numbers
of clusters. The difference becomes larger as the num-
ber of clusters increases. The pole-field and magnitude
estimators perform similarly.

fMRI Data and Undistorting

We first optimised the degree of pole-field smoothing.
As we are interested in the success of unwrapping in
regions in which we have good signal, we first masked
the images in the same way as we did prior to undis-
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FIG. 4. Anexample slice through the simulated data used to test
the algorithm. (a) shows the raw simulated data (see text for details);
(b) the result of a simple unwrap; (c) the magnitude-field noise
estimator; (d) the result of unwrapping with the new algorithm using
this estimator; (e) the pole-field noise estimator and (f) the result of
unwrapping using the pole-field estimator.

tortion. As we do not know the true unwrapped value
for each voxel, we used a different measure to evaluate
success: we counted the number of jumps between ad-
jacent voxels greater than  in the unwrapped, masked
maps. The results are shown in Fig. 6. It can be seen
that optimal performance was obtained with a single
smoothing iteration, and this was used for the remain-
ing investigations. Figure 7 compares the output of the
simple unwrapping procedure and the new algorithm.
It can be seen that where the simple algorithm fails
catastrophically in many areas, no errors can be seen
in the output from the new method. More than 50 maps
have been unwrapped in our laboratory, and no algo-
rithm failures have been identified. As an illustration,
Fig. 8 shows sagittal slices near midline of raw and
unwrapped, masked phase maps for 10 subjects. Note
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FIG. 5. The number of voxels unwrapped incorrectly with the
standard simple unwrap, and the new algorithm with two different
noise estimators, as a function of the degree of noise added to the
simulated data.

the similarity in the pattern of distortions for the dif-
ferent subjects.

We also investigated the effect of varying the num-
ber of steps in the unwrapping process, which will
affect how gradually unwrapping approaches noise. We
used the same number-of-jumps measure to evaluate
performance as was used for assessing the effect of
smoothing. Figure 9 shows that the results change
little after a few tens of iterations in the unwrapping
process, although in our implementation, there was
little computational cost in having a larger number of
steps. Figure 10 illustrates successful undistorting of
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FIG. 6. The effect of varying the number of smoothing iterations
of the pole-field noise estimator on the number of jumps remaining in
the unwrapped map.
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FIG. 7. Comparison of: (a) signal magnitude; (b) phase unwrapped with the standard algorithm; (c) the pole field; and (d) phase

unwrapped with the new method.

an EPI image. Inspection shows the undistorting leads
to an image more similar in shape to the structural.

DISCUSSION

A new algorithm has been presented for three-di-
mensional phase unwrapping. It robustly unwraps
simulated and measured MRI data. It is fast, even on
large datasets. We have used it to obtain magnetic field
maps and shown subsequent successful undistorting of
MRI images using the pixel-shift method.

Other noise-immune unwrapping methods are also
well established in fields such as optics and synthetic
aperture radar reconstruction and might be applied to
three dimensions (Ghiglia and Pritt, 1998). For exam-
ple, one strategy might be to divide the raw phase map

into many distinct regions, and then try to minimize a
cost function at the boundaries between the regions.
Another is to find a function that can model the un-
wrapped map and then optimize the parameters that
define this by minimizing the squared difference be-
tween this model when wrapped and the raw map.
While both of these strategies might be successfully
applied to three dimensions, there are problems asso-
ciated with them. Tiling strategies can be slow: the
number of regions, and interactions between regions,
increases rapidly as maps become larger. Least-
squared methods are systematically biased, underesti-
mating the total phase change over a map (Loffeld et
al., 1996). However, both may have applications in
particular circumstances, where time is not a problem,
or the data can be precisely modeled.
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FI1G. 8. Sagital sections through the phase maps of ten subjects. The first and third columns show raw unwrapped phase maps; the second
and fourth unwrapped, masked maps.

As mentioned in the introduction, we can acquire non-EPI sequences for two reasons. First, if EPIs are
inhomogeneity maps using EPI or non-EPI acquisition highly compressively distorted in a particular region,
sequences. We believe it is more convenient to use then if we collect phase maps using an EPI sequence,
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FI1G. 9. Mean numbers of jumps remaining as a function of the number of noise-estimation field iterations for three different estimators.
Standard errors over subjects, which are not shown on the graph for clarity, decreased with increasing numbers of iterations, and were

similar for the three noise estimation methods.

these will also be compressed and least information
will be available for undistorting in one of the regions
where it is most needed. Second, if the distortion field
is measured in undistorted space, undistorting is a pull
problem: for each voxel in the destination undistorted
space, we can look up the appropriate voxel in the
warped EPI map. This contrasts with the more difficult
push problem, where for each voxel in distorted space,
we know where it moves to in undistorted space. This
latter is unlikely to give us complete coverage in the
undistorted space. We either need to do some kind of fit
and then invert the transformation or interpolate the
final dataset. However, while non-EPI sequences do
have these advantages, as they take longer to acquire,
they are more susceptible to subject movement. Also,
EPI sequences are fast enough to allow an alternative
to spatial unwrapping, where images with many dif-
ferent TEs can be acquired (Chen and Wyrwicz, 1999),
and unwrapping is performed over this dimension.
As discussed in the Introduction, there are theoreti-
cal limitations on what type of images may be spatially
unwrapped. In particular, if the field that we are at-
tempting to measure contains true phase discontinui-
ties, these will cause unwrapping errors unless invalid
paths crossing them can be eliminated. True phase
discontinuities may occur when measuring magnetic
fields that change very rapidly over space (e.g., from
the B1 field of an RF coil), or when using phase-encod-
ing to measure other quantities, such as the displace-

ment of the myocardium or very rapid flow. However,
from our measurements on many brains with the pa-
rameters described, the changes of the BO field over
space are gradual enough to avoid true phase discon-
tinuities.

In our undistorting procedure, we did not correct for
changes in intensity that may have been caused by
compression or expansion of the images. If the raw
images are undistorted, and then passed on to a stage
of parametric statistical analysis in which a t statistic
is calculated, a uniform scaling of the signal will not
have an effect. If movement artefacts interfere with
this process, it might be better to try to correct the
intensity in the images. This can be attempted by the
linear approximation of dividing by the degree of com-
pression or expansion (Jezzard and Balaban, 1995) or
by using an alternative to the pixel shift method (e.g.,
conjugate phase, Weisskoff and conjugate gradient
methods; Munger et al., 2000). However, recent work
by Jenkinson (2001) has suggested that intensity cor-
rections can induce an unacceptable degree of noise.

Another recent approach to tackling geometric dis-
tortions in EP images has been taken by Andersson et
al. (2001). Their algorithm uses the changes in image
shape that occur as an object moves in a distortion
field. It would be interesting to compare their measure-
ments with those obtained from direct measurement of
the distortion field using a technique such as that used
here. When mapping magnetic fields, the phase differ-
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FIG. 10. Result of undistorting a single sagital EPI slice. The top
panel shows the raw EPI, the middle panel the same slice undis-
torted, and the bottom panel the magnitude of the phase image,
which is collected with a non-EPI sequence and hence is not dis-
torted.

ence we measure between two scans will be propor-
tional both to the time between the scans and the
magnetic field strength. For a fixed difference in time,
the phase difference will be proportional to the mag-
netic field. Hence, at higher field strengths, there will
be greater phase wrapping and a robust algorithm
even more important.

In conclusion, we present a new algorithm for per-
forming three-dimensional phase unwrapping by iden-

CUSACK AND PAPADAKIS

tifying noisy regions in phase maps and unwrapping
these last. The algorithm is robust on simulated and
MRI data. Furthermore, as a general three-dimen-
sional phase unwrapping method, it could be applied to
phase data from MR that represents quantities other
than magnetic field strength, such as velocity, or to
data from other fields such as optics.
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NOTE

Compiled software and the source code to the algorithms used here
are available. Please contact the author.
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