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Abstract
Identifying what an object is, and whether an object has been encountered before, is a crucial

aspect of human behavior. Despite this importance, we do not yet have a complete understanding

of the neural basis of these abilities. Investigations into the neural organization of human object

representations have revealed category specific organization in the ventral visual stream in percep-

tual tasks. Interestingly, these categories fall within broader domains of organization, with reported

distinctions between animate, inanimate large, and inanimate small objects. While there is some

evidence for category specific effects in the medial temporal lobe (MTL), in particular in perirhinal

and parahippocampal cortex, it is currently unclear whether domain level organization is also pres-

ent across these structures. To this end, we used fMRI with a continuous recognition memory

task. Stimuli were images of objects from several different categories, which were either animate

or inanimate, or large or small within the inanimate domain. We employed representational similar-

ity analysis (RSA) to test the hypothesis that object-evoked responses in MTL structures during

recognition-memory judgments also show evidence for domain-level organization along both

dimensions. Our data support this hypothesis. Specifically, object representations were shaped by

either animacy, real-world size, or both, in perirhinal and parahippocampal cortex, and the hippo-

campus. While sensitivity to these dimensions differed across structures when probed individually,

hinting at interesting links to functional differentiation, similarities in organization across MTL

structures were more prominent overall. These results argue for continuity in the organization of

object representations in the ventral visual stream and the MTL.
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1 | INTRODUCTION

The ability to identify the objects we encounter in our daily lives, and

know which ones we have seen before, is a crucial aspect of human

behavior. What type of object a “thing” is, and whether it is familiar or

novel, can drastically change how we might interact with it, including,

for example, whether to approach or avoid it. Despite the importance

of object recognition, and the relative fluidity with which most humans

perform it, a detailed understanding of the neural functional

architecture that supports this ability is still elusive. One promising

approach to understanding the neural architecture of object perception

and memory is to explore how object representations are organized. In

particular, it is possible to examine similarities between patterns of

brain activity that different types of objects evoke, and to map this neu-

ral representational geometry to relevant dimensions in perception and

behavior.

It is known that some correspondence exists between how objects

are represented in the brain and how we behaviorally categorize them.

Important insight has been gained from functional magnetic resonance

imaging (fMRI) investigations of object processing in the ventral visual

stream (VVS). Numerous fMRI studies have revealed regions within the
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VVS that preferentially respond to particular stimulus categories with

high ecological relevance, including faces, scenes, bodies, and words

(see De Beeck et al., 2008 for review). Specifically, in extrastriate cor-

tex, regions have been reported that prefer one of these categories

over other categories, such as the fusiform face area or the parahippo-

campal place area (Kanwisher, et al., 1997; Epstein & Kanwisher, 1998;

for a review, see Grill-Spector & Weiner, 2014). Interestingly, these

functionally circumscribed regions are systematically organized within

broader preference zones. Medial aspects of occipito-temporal cortex

typically show a preference for inanimate objects, whereas lateral

aspects show a preference for animate objects (Graham, Barense, &

Lee, 2014; Sha et al., 2015). In addition to the animacy dimension, a

number of fMRI studies have revealed large-scale organization of the

VVS by real-world size (Konkle & Oliva, 2012; Konkle & Caramazza,

2013; Mitchell & Cusack, 2016; Cate et al., 2011). It has been found

that there is a preference zone for large inanimate objects in medial

occipito-temporal cortex and for small inanimate objects in more dor-

solateral aspects, but no corresponding size-based distinction has been

found for animate objects in lateral occipito-temporal cortex. This pat-

tern of preferences has been referred to as a tripartite organizing

schema (Konkle & Oliva, 2012).

Evidence for organization by animacy and real-world size has also

come from studies based on multivariate pattern analyses of fMRI data.

In this analytical approach, activity is not averaged across voxels, but

the similarity between patterns of activity evoked by different stimuli

or within a given region is compared. If stimuli within a category evoke

more similar patterns of activity than stimuli from different categories,

the brain region is considered to contain representations of that cate-

gory. Inasmuch as the pattern of activity across voxels can be labeled a

neural representation of an object, one can think of the comparisons

between categories as now existing in “representational geometry.”

Interestingly, Kriegeskorte et al. (2008b) applied this approach to voxels

distributed throughout the ventral temporal cortex using a wide variety

of objects, and found a highly consistent category- and domain-based

organization, with evidence for a distinction between animate and

inanimate objects, as well as varying degrees of similarity between cat-

egories within these domains (see also Proklova, Kaiser, & Peelen,

2016). A recent fMRI study with a similar focus on representational

similarities has shown that real-world size is also an organizing dimen-

sion of objects across a large swath of temporo-parieto-occipital cor-

tex, and within a number of subregions across the VVS (Julian et al.,

2016).

The influence of the category and domain of objects has been

most thoroughly characterized in the posterior and lateral aspects of

the VVS. At present, evidence that speaks to the organization of object

representations in medial temporal lobe (MTL) structures is more lim-

ited. While it has long been known that memory functions pertaining

to objects rely on the integrity of MTL structures (Davachi, 2006; Sco-

ville & Milner, 1957; Squire & Wixted, 2011), the organization of object

representation that supports these functions remains incompletely

understood. Furthermore, little is known about similarities and differen-

ces in organization across different MTL structures, including perirhinal

cortex (PrC), parahippocampal cortex (PhC), and the hippocampus

(HiP). The more posterior aspect of PhC has been well characterized,

given that it comprises a significant proportion of the parahippocampal

place area, a functionally defined region that preferentially responds to

scenes and large objects with navigational relevance (Aguirre, Zarahn,

& D’esposito, 1998; Downing et al., 1998; Epstein & Kanwisher, 1998;

Troiani et al., 2014; Kanwisher & Dilks, 2012; Epstein et al., 1999).

However, it is less clear whether this characterization holds for PhC as

a whole, and, whether it also holds for PrC and HiP. The lack of evi-

dence is surprising, given that a more anterior structure in the parahip-

pocampal gyrus, namely, PrC has been proposed to be the apex of the

VVS (Murray and Bussey, 1999; Murray et al., 2007). Furthermore, evi-

dence from studies of structural connectivity in non-human primates as

well as functional connectivity studies in humans indicates that both

PhC and PrC have strong connectivity with upstream areas in the VVS

and other posterior cortical regions (see Ranganath & Ritchey, 2012 for

a review). As such, it remains an unknown but interesting possibility

that the major dimensions that have been shown to shape representa-

tions in the posterior VVS, that is, animacy and real-world size, also

shape organization of object categories in PrC and PhC. To the extent

that the HiP receives much of its cortical input from these structures, it

is also important to include the HiP in this inquiry.

Research with direct comparisons of visual stimulus responses in

PrC and PhC has shown robust differences for processing of faces,

objects, and scenes across both structures. At the univariate level, PhC

shows a scene preference, while PrC, in particular anterior portions,

shows a face preference (Liang et al., 2012; Litman et al., 2009; O’Neil

et al., 2013; see Olsen et al., 2012; for review). However, evidence sug-

gests this is not a sharp distinction, but an anterior–posterior gradient

from scenes to faces (Liang et al., 2012; Litman et al., 2009). In MVPA-

based studies, it has been shown that object, scene, and face informa-

tion can be distinguished at the category level in both PhC and PrC. In

general, scene decoding is higher in PhC, and face responses can be

better decoded from PrC (LaRocque et al., 2013; Liang et al., 2012),

although Diana et al. (2010) did not find above chance decoding of

objects or faces in PrC. Aside from the evidence that scenes and faces

are distinctly represented in these MTL structures, it is less clear

whether other object categories are distinctly represented, and how

this is similar or different across regions. This is in large part due to the

fact that most studies have used mixed groups of objects without any

systematic attempt to probe category based distinctions. In recent

work from our lab, Martin et al. (2013; 2016) explored this issue in the

context of recognition memory judgments, using chairs, faces, and

buildings as categorized stimuli. We reported that it was possible to

decode the perceived familiarity of faces from activity patterns in PrC,

the familiarity of buildings from patterns in PhC, and familiarity for

chairs from patterns in both structures. While these findings go beyond

showing distinctions between scenes and faces in the medial temporal

lobe (MTL), they do not allow for broader characterization of represen-

tational space across a wider variety of object categories.

Our primary interest in this study was in a comparison of object

representations from different categories across the PrC, PhC, and in

the HiP. While previous work has revealed some evidence for object

category specificity in PrC and PhC, the HiP has been seen as more

2 | BLUMENTHAL ET AL.3780 BLUMENTHAL et al.



VVS that preferentially respond to particular stimulus categories with

high ecological relevance, including faces, scenes, bodies, and words

(see De Beeck et al., 2008 for review). Specifically, in extrastriate cor-

tex, regions have been reported that prefer one of these categories

over other categories, such as the fusiform face area or the parahippo-

campal place area (Kanwisher, et al., 1997; Epstein & Kanwisher, 1998;

for a review, see Grill-Spector & Weiner, 2014). Interestingly, these

functionally circumscribed regions are systematically organized within

broader preference zones. Medial aspects of occipito-temporal cortex

typically show a preference for inanimate objects, whereas lateral

aspects show a preference for animate objects (Graham, Barense, &

Lee, 2014; Sha et al., 2015). In addition to the animacy dimension, a

number of fMRI studies have revealed large-scale organization of the

VVS by real-world size (Konkle & Oliva, 2012; Konkle & Caramazza,

2013; Mitchell & Cusack, 2016; Cate et al., 2011). It has been found

that there is a preference zone for large inanimate objects in medial

occipito-temporal cortex and for small inanimate objects in more dor-

solateral aspects, but no corresponding size-based distinction has been

found for animate objects in lateral occipito-temporal cortex. This pat-

tern of preferences has been referred to as a tripartite organizing

schema (Konkle & Oliva, 2012).

Evidence for organization by animacy and real-world size has also

come from studies based on multivariate pattern analyses of fMRI data.

In this analytical approach, activity is not averaged across voxels, but

the similarity between patterns of activity evoked by different stimuli

or within a given region is compared. If stimuli within a category evoke

more similar patterns of activity than stimuli from different categories,

the brain region is considered to contain representations of that cate-

gory. Inasmuch as the pattern of activity across voxels can be labeled a

neural representation of an object, one can think of the comparisons

between categories as now existing in “representational geometry.”

Interestingly, Kriegeskorte et al. (2008b) applied this approach to voxels

distributed throughout the ventral temporal cortex using a wide variety

of objects, and found a highly consistent category- and domain-based

organization, with evidence for a distinction between animate and

inanimate objects, as well as varying degrees of similarity between cat-

egories within these domains (see also Proklova, Kaiser, & Peelen,

2016). A recent fMRI study with a similar focus on representational

similarities has shown that real-world size is also an organizing dimen-

sion of objects across a large swath of temporo-parieto-occipital cor-

tex, and within a number of subregions across the VVS (Julian et al.,

2016).

The influence of the category and domain of objects has been

most thoroughly characterized in the posterior and lateral aspects of

the VVS. At present, evidence that speaks to the organization of object

representations in medial temporal lobe (MTL) structures is more lim-

ited. While it has long been known that memory functions pertaining

to objects rely on the integrity of MTL structures (Davachi, 2006; Sco-

ville & Milner, 1957; Squire & Wixted, 2011), the organization of object

representation that supports these functions remains incompletely

understood. Furthermore, little is known about similarities and differen-

ces in organization across different MTL structures, including perirhinal

cortex (PrC), parahippocampal cortex (PhC), and the hippocampus

(HiP). The more posterior aspect of PhC has been well characterized,

given that it comprises a significant proportion of the parahippocampal

place area, a functionally defined region that preferentially responds to

scenes and large objects with navigational relevance (Aguirre, Zarahn,

& D’esposito, 1998; Downing et al., 1998; Epstein & Kanwisher, 1998;

Troiani et al., 2014; Kanwisher & Dilks, 2012; Epstein et al., 1999).

However, it is less clear whether this characterization holds for PhC as

a whole, and, whether it also holds for PrC and HiP. The lack of evi-

dence is surprising, given that a more anterior structure in the parahip-

pocampal gyrus, namely, PrC has been proposed to be the apex of the

VVS (Murray and Bussey, 1999; Murray et al., 2007). Furthermore, evi-

dence from studies of structural connectivity in non-human primates as

well as functional connectivity studies in humans indicates that both

PhC and PrC have strong connectivity with upstream areas in the VVS

and other posterior cortical regions (see Ranganath & Ritchey, 2012 for

a review). As such, it remains an unknown but interesting possibility

that the major dimensions that have been shown to shape representa-

tions in the posterior VVS, that is, animacy and real-world size, also

shape organization of object categories in PrC and PhC. To the extent

that the HiP receives much of its cortical input from these structures, it

is also important to include the HiP in this inquiry.

Research with direct comparisons of visual stimulus responses in

PrC and PhC has shown robust differences for processing of faces,

objects, and scenes across both structures. At the univariate level, PhC

shows a scene preference, while PrC, in particular anterior portions,

shows a face preference (Liang et al., 2012; Litman et al., 2009; O’Neil

et al., 2013; see Olsen et al., 2012; for review). However, evidence sug-

gests this is not a sharp distinction, but an anterior–posterior gradient

from scenes to faces (Liang et al., 2012; Litman et al., 2009). In MVPA-

based studies, it has been shown that object, scene, and face informa-

tion can be distinguished at the category level in both PhC and PrC. In

general, scene decoding is higher in PhC, and face responses can be

better decoded from PrC (LaRocque et al., 2013; Liang et al., 2012),

although Diana et al. (2010) did not find above chance decoding of

objects or faces in PrC. Aside from the evidence that scenes and faces

are distinctly represented in these MTL structures, it is less clear

whether other object categories are distinctly represented, and how

this is similar or different across regions. This is in large part due to the

fact that most studies have used mixed groups of objects without any

systematic attempt to probe category based distinctions. In recent

work from our lab, Martin et al. (2013; 2016) explored this issue in the

context of recognition memory judgments, using chairs, faces, and

buildings as categorized stimuli. We reported that it was possible to

decode the perceived familiarity of faces from activity patterns in PrC,

the familiarity of buildings from patterns in PhC, and familiarity for

chairs from patterns in both structures. While these findings go beyond

showing distinctions between scenes and faces in the medial temporal

lobe (MTL), they do not allow for broader characterization of represen-

tational space across a wider variety of object categories.

Our primary interest in this study was in a comparison of object

representations from different categories across the PrC, PhC, and in

the HiP. While previous work has revealed some evidence for object

category specificity in PrC and PhC, the HiP has been seen as more

2 | BLUMENTHAL ET AL.

“agnostic,” or insensitive to visual stimulus category (Huffman & Stark,

2014; LaRocque et al., 2013; Diana et al., 2010). It has been posited

that this is because the HiP binds object and spatial information

received from the PrC and PhC (Eichenbaum et al., 2007; Ranganath &

Ritchey, 2012). More specifically, if the HiP represents complex con-

junctions of many different kinds of objects and their spatial backdrop

it may be difficult to reveal any category specificity (e.g., in a complex

scene there may be objects from many different categories). Interest-

ingly, one study reported above-chance decoding of scene information

from posterior HiP (Liang et al., 2012). At the univariate level, the HiP

often shows more activity for scenes as compared to other stimulus

categories such as objects or faces, which has led to the suggestion

that it be considered a part of the core scene-network (Hodgett’s et al.,

2016). Furthermore, individuals with hippocampal damage have been

reported to show impairments in vividly recalling scenes, maintaining

scenes in working memory, and constructing scenes in their imagina-

tion (Hassabis et al.; Mullally Intraub, & Maguire et al., 2012; Taylor et

al., 2007; Lee et al., 2005).This suggests that the HiP may not be

entirely agnostic to the nature of stimulus categories encountered. As

such, it is possible that it may also be sensitive to stimulus domain.

In this fMRI study, we addressed whether and how animacy and

real-world size affect the organization of object categories in the MTL.

We tested the hypothesis that object-evoked responses in perirhinal

and parahippocampal cortex, as well as the hippocampus, show evi-

dence for domain-level organization along both dimensions. To this

end, we scanned participants while they performed a continuous rec-

ognition memory task on objects from 12 different categories. We

chose a continuous recognition memory task because it required partic-

ipants to make memory decisions (i.e., “old” or “new”) for specific exem-

plars from these categories, thus maximizing the need to disambiguate

objects with substantial feature overlap. To address our questions of

interest, we employed representational similarity analyses (RSA). With

these analyses we first asked whether PrC, PhC, and the HiP represent

distinct categories of objects. We then explored whether the

categories were organized along an animate/inanimate divide, and

whether or not inanimate objects were organized by their real-world

size.

2 | MATERIALS AND METHODS

2.1 | Participants

Fifteen individuals participated in the study (20–32 years of age, mean

age527.5 years; 8 females). All participants were right-handed with

normal or corrected-to-normal vision, and no history of psychiatric or

neurological disorders. Data from two participants were excluded due

to technical difficulties. Participants received financial compensation

for their participation, and provided informed consent according to pro-

cedures approved by the University of Western Ontario Health Scien-

ces Research Ethics Board

2.2 | Stimuli

Stimuli were color images depicting exemplars from 12 different object

categories (Figure 1), including 4 categories of animate objects (faces,

bodies, monkeys, and insects), 4 categories of large inanimate objects

(buildings, vehicles, trees, and furniture), and 4 categories of small inani-

mate objects (flowers, fruits, musical instruments, and tools). Size and

animacy classification was based on prior research (Konkle & Cara-

mazza, 2013) and confirmed through ratings in pilot work in a separate

group of participants for all stimuli employed here. Twenty-eight

objects were chosen from each category, for a total of 336 experimen-

tal stimuli. In addition, 3 filler items were presented in each run, one of

which was repeated early on in the run to ensure that participants

would immediately be prepared for repetitions. The second and third

filler items were presented toward the end of the run to increase the

proportion of novel stimuli at that stage. Filler items were chosen from

categories other than (and unrelated to) those employed on experimen-

tal trials. Images of objects were obtained from the Konkle lab database

FIGURE 1 Stimuli. Example objects from the 12 object categories employed. Categories were grouped into animate: faces, bodies,
monkeys, insects; inanimate small: flowers, fruits, tools, musical instruments; and inanimate large: buildings, trees, vehicles, and furniture
[Color figure can be viewed at wileyonlinelibrary.com]
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(http://konklab.fas.harvard.edu/#) and through an additional Google

image search. Each image was presented in isolation on a white back-

ground bound at 500 3 500 pixels, on a uniform grey background. The

size of each image was bound at a maximum of 500 pixels for

one dimension, with the other dimension corresponding to the appro-

priate aspect ratio. Across categories, there were no significant differ-

ences in the area covered by objects in the images, their aspect-ratio,

or their mean luminance (all p> .05).

2.3 | Experimental procedure

During fMRI scanning, participants performed a continuous recognition

memory task that required recognition of repeated presentations of

specific exemplars (Figure 2). Exemplars were presented twice, with

repetitions always occurring in the same run. Images were presented

for 1,200 ms, and participants were asked to indicate whether the

image was “novel” (first presentation), or “old” (second presentation)

with button presses using their middle or index finger. To encourage

rapid responding and mark the time window for responding, a red bor-

der surrounding the image appeared 600 ms after stimulus onset and

stayed on screen until stimulus offset. Participants were instructed to

respond as soon as the red border appeared. Mapping of responses to

buttons was counterbalanced across participants. Each stimulus pre-

sentation was followed by a jittered ITI (2,000–6,000 ms) during which

participants viewed a fixation cross centered on a grey background. Jit-

ter was distributed such that the average delay between first and sec-

ond presentations of items was matched across categories (average

time584.1 s, range519.0–316.0 s). In addition, the average number

of images between repetitions was matched across categories (average

number of intervening images517, range 516–18). Each run consisted

of 4 objects from each of the 12 categories, resulting in a total of 8

image presentations per category, or 96 experimental trials per run. In

addition, each run contained 3 filler trials. Across runs, presentations of

objects from each category were preceded and followed by an object

from each of the other categories with roughly equal frequency (8–11

times). Participants completed seven runs. Three different run orders

were created for the purpose of counterbalancing across participants.

Prior to scanning, each participant completed a 5-min practice task

with images from categories that were unrelated to those used during

scanning to be familiarized with task requirements and response

deadline.

2.4 | Image acquisition

MRI data were acquired on a Siemens TIM Trio 3-Tesla scanner with a

high-resolution protocol. Functional MRI volumes were collected using

a highly accelerated gradient-echo EPI sequence (Center for Magnetic

Resonance Research, University of Minnesota) with a multiband

acceleration factor of 4 and GRAPPA in-plane acceleration of 2. The

following parameters were used: TR5650 ms, TE530 ms, slice

thickness52 mm, FOV5192 mm 3 192 mm, flip angle5548. Each

functional volume included 40 slices collected in an interleaved man-

ner. To optimize MR signal in the anterior temporal lobes, a transverse

orientation was chosen for acquisition, which allowed for inclusion of

the entire temporal and occipital lobes, with partial coverage of frontal

and parietal cortices, in all participants. T1-weighted anatomical images

were obtained using an ADNI MPRAGE sequence (192 slices,

FIGURE 2 Task: Continuous recognition memory. An image depicting an object from 1 of the 12 categories was presented on screen for 1,200 ms.
After 600 ms, a red border popped up around the image, and participants were required to respond “novel” indicating it was the first time they had
seen that image, or “old” indicating that it was the second time they had seen that image [Color figure can be viewed at wileyonlinelibrary.com]
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TR52,300 ms, TE 52.98 ms, 1 mm isotropic voxels, FOV5240 3

256 mm, flip angle598).

2.5 | Neuroimaging analysis

2.5.1 | Preprocessing and modeling

fMRI data were analyzed using SPM8 (Welcome Institute of Cognitive

Neurology; http://www.fil.ion.ucl.ac.uk/spm/software/spm8/), employ-

ing an analysis pipeline as implemented in the automatic analysis system

(aa) (www.github.com/rhodricusack/automaticanalysis) (Cusack et al.,

2015). Functional data were motion corrected and high pass-filtered to

remove low-frequency noise (drift); slice-time correction was not imple-

mented due to the use of a multiband sequence. Four dummy scans at

the start of each session were discarded to allow for T1 relaxation. For

each participant, the mean functional image was then co-registered with

the participant-specific anatomical image. Co-registered images were

kept in native space for each participant, and no spatial smoothing was

applied to preserve high-spatial resolution for MVPA. Functional data

were convolved using a canonical hemodynamic response function. Cat-
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Regressors were constructed from boxcars with durations equal to that
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we contrasted all experimental trials against baseline (gray screen with a
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Multivariate analyses were computed on a between-run basis to ensure
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Linke et al., 2011). To explore the representational space in each ROI,

for each subject, we first extracted beta values for each category and

computed the Pearson’s correlation for each category compared to each

other category. Prior to computing the correlations, the grand mean (i.e.,

the cocktail mean) for each run was subtracted across all voxels for that

run (Walther et al. 2016). This resulted in a 12 3 12 representational

similarity matrix (RSM) for each participant, for each ROI, with within

category similarity values (across runs) on the diagonal, and between cat-

egory information (across runs) on the off diagonal (Figure 5). To test

whether the representational space was modulated by category, ani-

macy, and size within inanimate objects, we created linear models (pre-

defined contrasts) specifying which RSM correlation values were to be

subjected to a t test that tested models (Figure 6). These analyses were

performed on data in single-subject RSMs, with the group statistics cal-

culated from the average results. For the purpose of visualizing our

results, RSMs were averaged across participants, resulting in a final

FIGURE 3 Left: tripartite preference zones in posterior occipito-temporal cortex (courtesy of Konkle & Carmazza 2013). Right: anatomical
regions of interest examined in the medial temporal lobe, for one example participant [Color figure can be viewed at wileyonlinelibrary.com]
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group similarity matrix for each ROI (Kriegeskorte et al., 2008a). Group-

averaged RSMs were ordered in the following way: animate objects,

small inanimate objects, and large inanimate objects. Note that RSM’s

are not symmetrical in the visualization; this is because the upper triangle

shows the mean from a subset of across run correlations (i.e., cell 1, 2 is

condition 1 in the even runs correlated with condition 2 in the odd runs,

whereas cell 2, 1, is condition 1 in the odd runs correlated with condition

2 in the even runs).

We first asked whether there was evidence of category-level orga-

nization in each ROI. To test for this, we defined a contrast of category

representation (Figure 6). In other words, a linear model where all

within category (diagonal) patterns were more highly correlated than

between category (off diagonal) patterns. In the initial analysis, we

tested an omnibus contrast (i.e., model) that probed for the presence of

any category-specific information in each ROI. We then tested for

information relating to each of the 12 categories individually. Specifi-

cally, we tested whether the patterns of activation across voxels were

more similar within each category compared to the 11 other categories,

using subject as a random effect.

In our second set of analyses, we asked whether or not the ani-

mate vs. inanimate object distinction that has been found to shape the

organization of object representations in more posterior aspects of the

VVS (Konkle & Oliva, 2012; Konkle & Carmazza, 2013) was also an

organizing dimension in the MTL. This analysis was identical to the pre-

viously described analyses, except that for the purpose of evaluating

differences in correlations (i.e., within vs. between) we focused on the

domains of animate as compared to inanimate objects rather than indi-

vidual categories (Figure 6). Importantly, in these analyses, we removed

the diagonal from our model to discard the influence of within category

similarities.

In our third and final set of analyses, we asked whether real world

size is an organizing dimension within the domain of inanimate objects in

MTL, again as has been reported for object representations in more pos-

terior aspects of the VVS (Konkle & Oliva, 2012; Konkle & Caramazza,

2013; Proklova et al., 2016). Here, we divided inanimate objects into

groups of small or large objects, with trees, furniture, vehicles, and bulid-

ings comprising the large group, and fruit, flowers, musical instruments,

and tools comprising the small group. The analysis was identical to the

previous one except that within vs. between similarities were computed

across all categories of large or small inanimate objects (Figure 6). As in

the analyses on animacy described above, we did not include the diago-

nal in testing of this model.

3 | RESULTS

3.1 | Behavioral results

Recognition-memory accuracy, quantified using the discriminability

index d0 , and reaction times are shown in Table 1 for all categories.

Critically, memory discrimination as measured with d0 was matched

across dimensions of interest. Specifically, we found no differences

in performance between animate and inanimate objects (mean d0

animate51.76, SD50.78, mean d0 inanimate51.94, SD50.71,

t(12)521.30, p5 .2; Figure 4). There were also no differences

based on real-world size, that is, between large inanimate and small

inanimate objects (mean d0 large inanimate51.96, SD50.77, mean

d0 small inanimate52.00, SD50.80, t(12)52.452, p5 .7 (Figure 4).

We did find differences in RTs between animate and inanimate cat-

egories (mean RT animate51.01 s, SD50.037, mean RT

inanimate51.00 s, SD5 0.041 t(12)52.41, p5 .02), as well as large

inanimate and small inanimate objects (mean RT large

inanimate51.007 s, SD50.040, mean RT small inanimate50.993 s,

SD50.033, t(12)523.49, p5 .004). Although these RT differences are

statistically significant, we note that they are very small because the task

required responding within a restricted time window (i.e., there was a

response deadline that was visually indicated in the displays). We think it

is unlikely that differences of this magnitude explain the fMRI results we

report here in particular given the focus on patterns of activity that have

been demeaned.

3.2 | fMRI results

3.2.1 | Category

We first tested a model that probed for the presence of category-

specific information by comparing within vs. between category similar-

ity across all categories combined, employing Bonferroni correction for

FIGURE 4 Recognition memory performance for domains of interest, as measured with d 0. There were no significant differences on
performance between animate or inanimate objects (p5 .2), or between large and small inanimate objects (p5 .7)
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and tools comprising the small group. The analysis was identical to the

previous one except that within vs. between similarities were computed

across all categories of large or small inanimate objects (Figure 6). As in

the analyses on animacy described above, we did not include the diago-

nal in testing of this model.
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3.1 | Behavioral results

Recognition-memory accuracy, quantified using the discriminability

index d0 , and reaction times are shown in Table 1 for all categories.

Critically, memory discrimination as measured with d0 was matched

across dimensions of interest. Specifically, we found no differences

in performance between animate and inanimate objects (mean d0

animate51.76, SD50.78, mean d0 inanimate51.94, SD50.71,

t(12)521.30, p5 .2; Figure 4). There were also no differences

based on real-world size, that is, between large inanimate and small

inanimate objects (mean d0 large inanimate51.96, SD50.77, mean

d0 small inanimate52.00, SD50.80, t(12)52.452, p5 .7 (Figure 4).

We did find differences in RTs between animate and inanimate cat-

egories (mean RT animate51.01 s, SD50.037, mean RT

inanimate51.00 s, SD5 0.041 t(12)52.41, p5 .02), as well as large

inanimate and small inanimate objects (mean RT large

inanimate51.007 s, SD50.040, mean RT small inanimate50.993 s,

SD50.033, t(12)523.49, p5 .004). Although these RT differences are

statistically significant, we note that they are very small because the task

required responding within a restricted time window (i.e., there was a

response deadline that was visually indicated in the displays). We think it

is unlikely that differences of this magnitude explain the fMRI results we

report here in particular given the focus on patterns of activity that have

been demeaned.

3.2 | fMRI results

3.2.1 | Category

We first tested a model that probed for the presence of category-

specific information by comparing within vs. between category similar-

ity across all categories combined, employing Bonferroni correction for
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performance between animate or inanimate objects (p5 .2), or between large and small inanimate objects (p5 .7)
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the number of ROIs (3) (Figure 6). We found that all MTL regions

showed sensitivity to category membership (PhC: t(12)56.41,

p5 .00006; PrC: t(12) 55.01, p5 .0006; HiP: t(12)53.67, p5 .009;

Figure 6). Next we examined sensitivity to information about each cat-

egory individually, asking for each category whether the within pattern

similarity for that category (across runs) was more similar than the

FIGURE 5 Representational geometry for object-evoked responses in the medial temporal lobe. Representational similarity matrices for the three
MTL structures. Matrices show Pearson’s correlations between patterns of activity evoked by each object category compared to each other object
category. Note that the diagonal shows within-category correlations across runs (each run had different exemplars from the given category). The top
row shows each RSMwithout scaling across structures and the bottom row shows each RSM on the same scale for all structures. Note that RSM’s are
not symmetrical in the visualization, this is because the upper triangle shows the mean from a subset of across run correlations (i.e., cell 1,2 is condition
1 in the even runs correlated with condition 2 in the odd runs, whereas cell 2,1 is condition 1 in the odd runs correlated with condition 2 in the even
runs) [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Behavioral performance for each object category

Recognition memory performance by category

Category d0 RT crs RT hits
Significant differences
overall RT

Significant
differences d0

face 1.58, sd 5 0.35 1.037, sd 5 0.041 .975 sd 5 0.057

body 1.60, sd 5 0.61 1.059, sd 5 0.042 .979, sd 5 0.045 fruit, tool

monkey 1.69, sd 5 0.66 1.056, sd 5 0.047 .980, sd 5 0.034 fruit, tool

insect 2.18, sd 5 0.97 1.041, sd 5 0.038 .972, sd 5 0.046

flower 1.93, sd 5 0.86 1.017, sd 5 0.027 .991, sd 5 0.070

fruit 2.33, sd 5 0.95 1.023, sd 5 0.045 .951, sd 5 0.038 tree, building tree

musical instrument 1.88, sd 5 0.59 1.012, sd 5 0.034 .968, sd 5 0.046

tool 1.90, sd 5 0.58 1.014, sd 5 0.048 .965, sd 5 0.047 building

tree 1.62, sd 5 0.71 1.035, sd 5 0.042 .994, sd 5 0.042

vehicle 2.51, sd 5 0.86 1.007, sd 5 0.047 .987, sd 5 0.063 body, face, fruit,
furniture, tree,
monkey

furniture 1.71, sd 5 0.64 1.029, sd 5 0.042 .974, sd 5 0.040

building 1.99, sd 5 0.72 1.036, sd 5 0.048 .995, sd 5 0.049

Significant differences are listed for pooled reaction times (correct rejections and hits) for each object category, as well as for category differences in
overall performance as measured by d0.
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between pattern similarity (for that category compared to all other tested

categories across runs). To adjust for the larger number of corresponding

comparisons, we employed Bonferroni correction in these analyses. In

PhC, we found significant effects for buildings (t(12)55.62, p5 .001),

furniture (t(12)53.85, p 5.02), vehicles (t(12)54.15, p5 .01), and faces

(t(12)54.23, p5 .01). In PrC, we found category-related effects for mon-

keys (t(12)54.28, p5 .01), and a trend toward significance for faces

(t(12)53.17, p5 .08, uncorrected p5 .007). In the HiP, we only found

one category that showed a trend toward significance, namely, buildings

(t(12)53.37, p5 .06, uncorrected p5 .005).

3.2.2 | Animacy

In our next set of analyses, we turned to domain-level organization of

object representations based on groupings of multiple categories.

Specifically, we asked whether MTL regions hold information shared

between categories at the domain level of animacy. To address this

question, we probed whether representations for objects within a

domain (animate or inanimate, respectively) share more similarity with

each other than they do with representations from the other domain.

In order to remove any impact of category-level effects (as described in

the previous sections), we removed the diagonal in this model (Figure

6). We found that the representational structure in both PhC and PrC

reflected the animacy divide (PhC: t(12)53.73, p5 .002; PrC: t(12)5

3.02, p5 .02). By contrast, we found no evidence for organization of

object representations by animacy in the HiP (t(12)52.04, p5 .18)

(Figure 6).

Because there is evidence suggesting that PrC is sensitive to fea-

ture overlap, and feature overlap is known to differ across natural kinds

versus artifacts (De Renzi, Perani, Carlesimo, Silveri, & Fazio, 1998;

McRae, De Sa, & Seidenberg, 1997; McRae & Cree, 2002; Moss et al.,

1998; Tyler et al., 2000; Tyler & Moss, 2001), we also explored

whether representations in PrC are organized according to a natural

versus artifact divide. Specifically, we compared the categories of flow-

ers, fruits, and trees, with furniture, tools, vehicles, and buildings. The

outcome of this analysis, however, provided no evidence in support of

this domain organization in PrC (t(12)51.97, p5 .21).

3.2.3 | Real-world size

In a further set of analyses, we examined domain-level organization

related to the size of inanimate objects. To address this question, we

probed whether representations for objects within the domain of small

or large inanimate objects, respectively, share more similarity with each

other than they do with representations from the other domain. Again,

we removed the diagonal in this model in order to remove any impact

of category-level effects (Figure 6). We found evidence for size related

organization in both the PhC and HiP (PhC: t(12)54.14, p5 .003; HiP:

t(12)54.07, p5 .003). By contrast, we found no such evidence in PrC

(t(12)52.67, p5 .06)

3.2.4 | Visualization of representational geometry

In a final step, we visualized the representational space for all object

categories in each of the ROIs examined using hierarchical clustering

(Figure 7). This data-driven approach can reveal properties that drive

the organization of representations without any a priori hypotheses

(Kriegeskorte et al., 2008b). In PhC, the most dominant dimension of

organization is that between large inanimate objects and all other cate-

gories. In PrC, the most dominant dimension of organization is animacy.

Unlike in PhC, large inanimate objects do not form a separate grouping.

Finally, in HiP, the most notable distinction is that between buildings

and all other object categories.

FIGURE 6 Organization of object representations in the MTL. All bar plots show beta fits between model of organization tested and RSM for
each MTL structure: (a) model of category representation; (b) model of animacy organization; (c) model of real-world size for the inanimate
domain.* indicates the model fit was significant with correction for multiple comparisons [Color figure can be viewed at wileyonlinelibrary.com]
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3.2.3 | Real-world size

In a further set of analyses, we examined domain-level organization
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3.2.5 | Comparing domain organization within

and between MTL structures

Given that we observed a different pattern of significant model fits

across MTL ROI’s, we further probed these differences by comparing

model fits for different domains to each other within each ROI. Specifi-

cally, we tested whether organization by real-world size or animacy

was a better fit within each ROI by computing a within-subjects t test

on the beta-values for the model fits. We found no significant differen-

ces between model fits within any ROI (PhC: t(12)50.46, p5 .65; PrC:

t(12)50.56, p5 .58; HiP: t(12)50.71, p5 .48). We also asked whether

organization by category or domain differed significantly across region

when tested against each other. Specifically, we ran a repeated meas-

ures ANOVA with ROI (PhC, PrC, and HiP) and model (category, ani-

macy, and real-world size for inanimate) as factors. We found a main

effect of ROI F(12)54.587, p5 .04, but no interaction F(12)50.026,

p5 .97.

3.2.6 | Extra-MTL control analyses

Our main goal in this study was to explore representational space in

MTL structures. However, we completed two further analyses to better

understand the selectivity of our MTL findings. First, we tested all three

models (category membership, animacy, and real-world size) in a con-

trol region where we would not expect to see organization for visual

stimuli, namely primary auditory cortex bilaterally. Second, we tested

all three models in two visual cortex ROIs, a bilateral primary visual cor-

tex ROI, and lateral occipital cortex (LOC), to compare and contrast

these regions with the MTL regions. The primary auditory and visual

cortex ROIs were taken from the MarsBar toolbox (Brett et al., 2002),

and the LOC ROI was taken from Xu and Chun (2006). All ROI’s were

transformed from MNI space to native space for each subject, and sub-

sequent analyses were identical to those previously described. We

found no evidence of category or domain organization in primary audi-

tory cortex (category: t(12)520.70, p5 .50; animacy: t(12)520.23,

p5 .82; real-world size: t(12)520.60, p5 .55, uncorrected). In primary

visual cortex, all three models were significant (category: t(12)58.27,

p5 .00001; animacy: t(12)56.05, p5 .0002; real-world size: t(12),

p5 .005). In LOC, we found significant model fits for category organi-

zation (t(12)58.5, p5 .00001) and animacy (t(12)53.65, p5 .01), but

not for real-world size (t(12)51.76, p5 .31).

4 | DISCUSSION

In this study, we examined the organization of object representations

in MTL structures, aiming to determine whether dimensions of organi-

zation prominent in upstream VVS are present in the MTL when partic-

ipants perform a recognition-memory task. Specifically, we asked (i)

FIGURE 7 Visualization of representational space. Hierarchical clustering for all object categories in each MTL structure [Color figure can
be viewed at wileyonlinelibrary.com]
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whether there is category specificity in object representations in MTL

structures (i.e., PrC, PhC, and the HiP), (ii) whether there is domain

specificity along an animate-inanimate divide, and (iii) whether there is

specificity in representations for inanimate objects related to real-

world size. We found that similar to VVS representational organization,

MTL structures do indeed display sensitivity to category membership,

animacy, and real-world size for inanimate objects. While model fits

related to these dimensions differed across structures when probed

individually, hinting at interesting links to functional differentiation pre-

viously discussed in the literature, similarities in organization across

MTL structures were more prominent overall. Our results replicate and

extend previous findings pertaining to category specificity in other task

contexts. Critically, they also expand the extant literature by providing

first insight into domain-level organization of object representations in

the MTL during recognition memory.

4.1 | PrC

PrC is the MTL structure that has most extensively been linked to

object processing in prior research. While this has been best character-

ized with respect to its role in recognition memory for objects, recent

work suggests that object representations in PrC also play a critical role

in perceptual and semantic tasks (Graham et al., 2010; Bussey et al.,

2002; Bussey & Saksida, 2007; Kivisaari et al., 2012, Clarke & Tyler,

2014; Bruffaerts et al., 2013; Martin et al., 2018a; see Graham et al.,

2010, for a review). However, the organization of object representa-

tions that support judgements in these tasks has received only lim-

ited investigation so far. In terms of category-level organization, it

has been reported that PrC shows specificity for the category of

faces in recognition memory and perceptual tasks (Diana et al.,

2010; Martin et al., 2013, 2016; O’Neil et al. 2013, 2014). The pres-

ent results extend this prior research by showing that PrC also

shows specificity for another animate category, namely monkeys, in

combination with a trend towards specificity for faces. Beyond this

category-level organization, we observed a broader organization in

PrC by the domain of animacy.

To our knowledge, domain-level organization has only been

explored previously in tasks that require object naming at the basic

(rather than exemplar) level. Specifically, it has been reported that PrC

shows higher levels of activity when participants have to name objects

that are animate as compared to objects that are inanimate (Moss

et al., 2005), and there is also evidence that damage to the PrC differ-

entially affects naming for animate objects (Wright et al., 2015). This

domain-specific pattern of findings has been attributed to the fact that

animate objects are distinct from inanimate objects at the level of fea-

ture statistics. Specifically, one important dimension that differs across

animate and inanimate objects is the amount of feature overlap and

feature distinctiveness amongst members of those domains. It has

been argued that overall animate objects have more feature overlap

and less distinctive features than inanimate objects (Devlin et al., 1998;

McRae et al., 1997; McRae & Cree, 2002; Moss et al., 1998; Tyler

et al., 2000; Tyler & Moss, 2001). In these studies, feature overlap is

typically defined based on listed features that can be classified as

perceptual or semantic (Martin et al., 2018a), and the level of represen-

tations tapped into by naming are at the basic level (i.e., distinguishing

a horse from a zebra rather than two different horses from each other).

Indeed, an fMRI study that employed RSA to examine object represen-

tations in PrC during naming revealed that PrC uniquely holds informa-

tion at the individual object level (Clarke & Tyler, 2014; see also

Bruffaerts et al., 2013, Martin et al. 2018a for related findings in PrC

based on written words). In the context of the continuous recognition

memory task used in this study, participants were required to make dis-

criminations similar, if not more fine-grained, to those required for

naming an individual exemplar. Namely, the task required recognition

of prior occurrence of specific exemplars, such as whether a particular

building had been presented previously. Thus, although our study did

not aim to test specific hypotheses about the impact of feature overlap

on representational similarities, one possibility is that the animacy-

related organization we report reflects differences on this dimension

between the animate and inanimate objects we employed. Given that

natural but inanimate object categories (such as fruits and vegetables)

are also known to have higher feature overlap than artifacts (such as

tools and buildings) (Devlin et al., 1998; McRae et al., 1997; McRae &

Cree, 2002; Moss et al., 1998; Tyler et al., 2000; Tyler & Moss, 2001),

we additionally explored whether PrC might show domain-level organi-

zation related to whether an object is natural or an artifact. This analy-

sis, however, did not provide evidence for such a distinction.

Nevertheless, given that this could be due to a lower degree of feature

overlap in our natural stimuli subset than our animate subset, further

research with explicit modeling of response patterns based on quanti-

tative estimates of feature overlap is required to determine how fea-

ture overlap contributes to the domain level organization we report

here.

The sensitivity of PrC to the animate–inanimate distinction may

also relate to the long range connectivity it maintains with other corti-

cal and subcortical regions. The idea that large-scale connectivity may

drive differential sensitivity between stimuli of different domains, such

as animate or large inanimate objects, has been fruitful toward under-

standing VVS organization in more posterior regions. Using a data-

driven approach with estimates of connectivity from resting-state

fMRI, Konkle and Caramazza (2016) identified three distinct resting

state networks that “route through” the large domain-preferring tripar-

tite regions of VVS. Specifically, animate-object preferring regions were

more strongly coupled with the anterior temporal lobe, small

inanimate-object preferring regions were more strongly coupled with

aspects of parietal cortex, and large inanimate object preferring regions

were more correlated with the posterior medial temporal lobe, as well

as early visual cortex regions differentially involved in processing stim-

uli in the peripheral visual fields. Current evidence linking long range

connectivity in PrC to processing information from particular object

domains or categories is very limited at present. However, in a recent

diffusion tensor imaging study, microstructure of the inferior longitudi-

nal fasciculus, which connects the occipital and ventro-anterior tempo-

ral lobe, including PrC, specifically correlated with accuracy on a

perceptual discrimination task involving faces but not scenes, as well as

category BOLD response to faces in this task (Hodgetts et al., 2016). In
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whether there is category specificity in object representations in MTL
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addition, several studies have examined the resting state connectivity

profiles that characterize different MTL structures (Kahn et al., 2008;

Libby et al., 2012). At the whole brain level, PrC shows distinct connec-

tivity with other structures within the anterior temporal lobes, amyg-

dala, and lateral orbitofrontal cortex. These connectivity findings have

led to the suggestion that PrC is part of a cortical network, referred to

as the anterior-temporal network, that plays a unique functional role in

memory and cognition (Ranganath & Ritchey, 2012). It has been argued

that, relative to a posterior-medial system of which PhC is a central

component, this anterior system is preferentially involved in object rec-

ognition as well as processing the social and emotional aspects of

objects and animate entities, semantic knowledge, and reward learning.

Although the model does not explicitly consider differences between

specific object categories or domains, to the extent that the informa-

tion processed in the anterior system pertains to ecologically relevant

information, this kind of processing may be more relevant to animate

objects.

4.2 | PhC

The role of the PhC in object processing during naming and recognition

memory tasks has been less explored than that of PrC, including evalu-

ating any function of feature overlap. In the memory literature, PhC

has been primarily implicated in scene recognition and in context repre-

sentation in tasks of associative memory (Ranganath & Ritchey, 2012).

However, recently, it has been shown that PhC also plays a role in rec-

ognition memory for objects, specifically those that have navigational

relevance, such as buildings or trees (Martin et al., 2013; Martin et al.,

2018b; see also Janzen & van Turennout, 2004). In this study, we also

found category specificity for buildings and trees, in addition to other

large inanimate objects, including furniture and vehicles. At the domain

level, we observed organization by animacy and real-world size for

inanimate objects. This is notable because the PPA (or parahippocampal

place area), which includes the posterior portion of PhC, has also been

shown to have higher levels of activity for inanimate objects, even

when contrasted with shape-matched animate objects (Proklova, Kai-

ser, & Peelen, 2016). Moreover, a number of studies have demon-

strated that the PPA is more active for large than for small objects

(Konkle & Carmazza 2013; Aguirre et al, 1998; Julian et al., 2016) , and

most similar to our findings, that patterns of activity in the PPA distin-

guish between large and small objects (Julian et al., 2016). This sensitiv-

ity to real-world size in the PPA, as well as that in the PhC that we

describe here, appears to be more reliable than what is observed in

PrC, where it reflected only a trend in the current study. This pattern

could suggest that there may be a gradient in terms of coding for real-

world size along the anterior–posterior axis of the parahippocampal

gyrus.

As in our discussion pertaining to PrC, it is informative to consider

the long-range connectivity of PhC in relation to the category and

domain level organization reported here. Resting-state connectivity

studies at the whole brain level have shown that PhC is differentially

connected to the retrosplenial cortex, posterior cingulate, precuneus,

parietal cortex, and ventromedial prefrontal cortex, as well as the

thalamus. In addition, PhC is also more strongly connected to posterior

medial occipital cortex and early visual areas (Libby et al., 2012). In light

of these resting-state connectivity findings, it has been suggested that

PhC is a component of the posterior medial network, with a functional

role in memory and cognition that differs from that of the anterior-

temporal network that includes PrC. These findings generally align with

the findings reported by Konkle and Caramazza (2016) that cortex in

the medial VVS that prefers large inanimate object is highly connected

to early visual areas tuned to the peripheral visual fields, as well as the

MTL (although not clearly specified whether it is the posterior portion

of the parahippocampal gyrus, it is distinct from the anterior temporal

area more highly connected to lateral VVS cortex). It has been argued

that this network is important for representing context in episodic

memory and episodic simulation, as well as in spatial navigation (Ranga-

nath & Ritchey, 2012). One possibility is that the sensitivity of PhC to

the animacy divide we report here is linked to differential processing of

large inanimate objects that are important for navigation, or are more

likely to serve as episodic context. Compared to animate objects, large

inanimate objects often evoke a stronger sense of surrounding space

(Mullally et al., 2012), and when stable, can also serve as landmarks

(Martin et al. 2018b; Janzen & van Turennout, 2004; Troiani et al.,

2014). From this perspective, animacy plays a role in the organization

of object representations in PhC because large inanimate objects share

dimensions important for the general functions of a posterior-medial

cortical system. We note, however, that any such preferential role does

not appear to be absolute as PhC also appears to represent faces as a

distinct category, as observed in this study and in other prior research

(Diana et al., 2010; Huffman & Stark, 2014; Liang et al., 2012). At a

more general level, such findings suggest that the organization of

object representations in the MTL also resembles that in the posterior

VVS, by virtue of pointing to distributed representations crossing multi-

ple structures rather than sharply defined functional modules (Haxby

et al., 2001).

4.3 | HiP

Interestingly, we found that the HiP shows no clear-cut categorical rep-

resentations of objects, although we observed a trend toward distinc-

tive coding of buildings, or organization by animacy. Similar to PhC, the

HiP was sensitive to the distinction between large and small inanimate

objects. The lack of clear cut category-specific representation in our

findings is in line with previous suggestions that the HiP is agnostic to

the nature or content of its representations at the item level. The

agnosticity of the HiP has been attributed to its unique role in pattern

separation of episodes (Huffman & Stark, 2014). According to this rea-

soning, the result of hippocampal pattern separation is that representa-

tions in the HiP are more dissimilar to each other than those in PrC

and PhC, leading to the loss of specificity in organization by category

that is present in these input structures. However, the evidence for

domain-level organization related to size we report here suggests that

the HiP may not be entirely insensitive to content.

There is a substantial evidence for a role of the HiP in scene per-

ception and construction (Barense et al., 2009; Hodgetts et al., 2016;
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Guderian et al., 2015; Lee & Maguire, 2016; Zeidman et al., 2015; for

review see Murray et al., 2017). For example, it has been demonstrated

that the HiP is more active during perceptual oddity tasks for scenes

than for other types of stimuli (Lee et al., 2008). Hodgetts et al. (2016)

found clusters of activity in the HiP that are higher for scenes than for

other stimulus categories (faces, objects) while participants performed

a 1-back task, and these clusters appeared as reliably as clusters in the

traditional scene-processing network (including PhC, retrosplenial cor-

tex, and transverse occipital sulcus). Based on these results, the authors

suggested that the HiP should be considered as a component of the

core scene processing network. Implied with this argument is the

notion that the HiP is not entirely agnostic to stimulus content. More

recent work by this group of researchers has provided some evidence

to explain why some studies find evidence for differential involvements

in scene processing and others do not (Hodgetts et al., 2016). In that

fMRI study, conducted with ultra-high resolution, sensitivity to scene

stimuli could be more precisely localized to a specific subfield of the

HiP, namely the subiculum, with other subfields staying agnostic. It is

possible that the sensitivity to real-world size of objects reported here,

together with the hint for category specific representations for build-

ings in HiP, are a result of similarities between large objects and scenes

that are of particular relevance to processing in the subiculum.

5 | CONCLUSIONS

Together, our findings show that stimulus dimensions that influence

the organization of object representations in the posterior VVS also

shape this organization in the MTL. Moreover, they reveal many simi-

larities in organization across PrC, PhC, and the HiP, with some hints of

differences. A promising direction for future research will be to test for

these differences in a more targeted manner. In addition, it will be

important to examine how patterns of large-scale connectivity can

account for the organizational principles in the MTL described, and to

determine how they relate to specific functional and perceptual proper-

ties of objects that differ across domains and categories.
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